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Abstract

In this paper, a nonlinear offline model of the solid oxide fuel cell (SOFC) is built by using a radial basis function (RBF) neural network based
on a genetic algorithm (GA). During the process of modeling, the GA aims to optimize the parameters of RBF neural networks and the optimum
values are regarded as the initial values of the RBF neural network parameters. Furthermore, we utilize the gradient descent learning algorithm to
adjust the parameters. The validity and accuracy of modeling are tested by simulations. Besides, compared with the BP neural network approach,
the simulation results show that the GA-RBF approach is superior to the conventional BP neural network in predicting the stack voltage with
different temperature. So it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Unlike other fuel cells, the solid oxide fuel cell (SOFC) is
entirely solid state with no liquid components and works in a
complicated high-temperature (600—1000 °C) environment. Due
to its higher energy conversion efficiency than those conven-
tional heat engine systems and other types of fuel cells, the SOFC
is the promising candidate for future energy conversion systems.

In the last several decades, fruitful results from SOFC stack
modeling have been obtained. However, most of the existing
models focus on the design of the SOFC instead of its appli-
cations. What matters most to SOFC users, however, are not its
relevant internal details but its performance under different oper-
ating conditions. What they really need are behavioral models,
with which they can predict the SOFC behavior under various
operating conditions.

Motivated by this need, we decided to make a modeling study
of the SOFC system by using a radial basis function (RBF)
neural network based on a genetic algorithm (GA). Neural net-
works are considered as an attractive structure to establish the
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mathematical relationship of the dynamic system based on the
input—output data. A RBF neural network is a feed-forward
neural network with one hidden layer and can uniformly approx-
imate any continuous function to a prospected accuracy [1].
However, a key problem by using the RBF neural network
approach is about how to choose the optimum initial values
of the following three parameters: the output weights, the cen-
ters and widths of the hidden unit. If they are not appropriately
chosen, the RBF neural network may degrade validity and accu-
racy of modeling. To assure the optimal performance of the
RBF neural network approach for SOFC modeling, we con-
sider applying a genetic algorithm to optimize the RBF neural
network parameters in this study. Genetic algorithms are a kind
of self-adaptive global searching optimization algorithm based
on the mechanics of natural selection and natural genetics [2].
Different from conventional optimization algorithms, genetic
algorithms are based on population, in which each individual is
evolved parallel, and the ultimate result is included in the last
population.

This paper is organized as follows. Section 2 briefly discusses
various existing SOFC models. In Section 3, a RBF neural
network based on a genetic algorithm for nonlinear system
modeling is explained. In Section 4, identification structure
of the SOFC stack and the processes of training and testing
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the GA-RBF model are presented in detail. Conclusions and
suggestions for future work are summarized in the last section.

2. Existing SOFC models

In this section, we briefly review the various existing SOFC
models and discuss their advantages and disadvantages. A SOFC
consists of an interconnected structure and a three-layer region
composed of two ceramic electrodes, anode and cathode, sepa-
rated by a dense ceramic electrolyte. In the fuel, the oxygen ions
formed at the cathode migrate through the ion-conducting solid
ceramic electrolyte to the anode/electrolyte interface where they
react with the hydrogen and carbon monoxide contained in the
fuel, producing water and carbon dioxide while liberating elec-
trons that flow back to the cathode/electrolyte interface via an
external circuit [3]. A single cell produces an open-circuit volt-
age of approximately 1V, so cells have to be connected together
in a series arrangement to form a stack.

Some analytical SOFC models have been put forward,
including, simplified zero-dimensional [4] and one-dimensional
models [5-8], two-dimensional models [9-12] and more com-
plex three-dimensional models [13,14]. Although these models
can help analyze and optimize the SOFC, they have some limits.
Most of the models are based on mass, energy and momentum
conservation laws, so their expressions are too complicated to
be suitable for engineering applications.

An empirical modeling approach will be more practical for
SOFC users, from which they can deduce SOFC stack responses
without knowledge of the internal details. To meet the demands,
some researchers have attempted to establish novel SOFC mod-
els. Arriagada et al. [15] utilized artificial neural network (ANN)
methodology to derive a SOFC model. Highly efficient as the
model is, however, its practical design suffers from some draw-
backs, such as the existence of local minima and over-fitting,
choice of the number of hidden units, etc. A least squares sup-
port vector machine (LS-SVM) was used to build the model of
a SOFC stack by Huo et al. [16]. LS-SVM is a modification of
SVM and possesses many advantages. However, this paper only
considered the fuel utilization, which had an effect on the cell
voltage, and did not think about the other factors.

In this work, a RBF neural network based on a genetic algo-
rithm is employed to establish a black-box model for the SOFC.
In the following sections, the GA-RBF modeling method will
be presented in detail.

3. GA-RBF neural network for nonlinear system
modeling

A RBF neural network has an input layer, a nonlinear hid-
den layer and a linear output layer. The nodes within each layer
are fully connected to the previous layer nodes. The input vari-
ables are each assigned to nodes in the input layer and connected
directly to the hidden layer without weights. The hidden layer
nodes are RBF units. The nodes calculate the Euclidean dis-
tances between the centers and the network input vector, and
pass the results through a nonlinear function [17]. The output
layer nodes are weighted linear combinations of the RBF in hid-

Fig. 1. The structure of RBF neural networks.

den layer. The structure of a RBF neural network with n inputs,
one output and ¢ hidden nodes is given in Fig. 1.

Where, input x=[x1, x2, ..., x,,]T and w=
[wl,wz,...,wq]T is the neural network weight. u; is a
nonlinear function and here, it is chosen as a Gaussian
activation function
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where ¢; =(cj1, ¢, - . ., cl;/)T,jz 1, 2, ..., n,is the center of the
ith RBF hidden unit, and b; is the width of the ith RBF hidden
unit. Then the ith RBF network output can be represented as a
linearly weighted sum of g basis functions
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Let y(k) represent the target value of the network at time k.
The error of the network at time & is defined as:

e(k) = y(k) — yq(k) 3)

The cost function of the network is the squared error between
the target and the predicted values, which is given by the fol-
lowing equation:

1 2
E(k) = 5 [e()] O]

The learning algorithm aims to minimize the squared error
using a gradient descent procedure. Hence, the change of the
output weight w;, the centers ¢;; and the widths b; is determined
according to the following equation:

wik) = witk — 1) + n Aw; + a(w;(k — 1) —w;(k —2)) (5)
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where « is the momentum term and 7 is the learning rate, « € [0,
1], n €0, 1]. The term Aw;, Ac;; and Ab; are defined as:
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When we program to realize the RBF algorithm, how to
choose the optimum initial values of the following three param-
eters in Egs. (5)—(7): the output weight w;, the centers c;; and the
widths b, is very important. If they are not appropriately chosen,
the RBF neural network may degrade validity and accuracy of
modeling. So a genetic algorithm is used to optimize the RBF
neural network parameters.

A genetic algorithm is an interactive procedure that maintains
apopulation of strings which constitute the set of candidate solu-
tions to the specific problem [18]. During each generation, the
strings in the current population are rated for their effectiveness
as solutions. On the basis of these evaluations, a new population
of candidate solutions is formed by using genetic operations,
such as selection, crossover and mutation. There are four major
steps required to use the genetic algorithm to solve a problem,
include, coding, evaluation of fitness, genetic operations and the
terminate criterion.

4. Modeling SOFC by GA-RBF

For a given SOFC stack, the relation between terminal volt-
age U and current density / is influenced by many operating
parameters, such as cell temperature, air flow rate, hydrogen
flow rate, air pressure, hydrogen pressure, etc. However, due to
the high number of operating variables, a complete experimental
database of SOFC under the different operating conditions is dif-
ficult to obtain and no data are available in the open literature yet
[19]. Up to now, almost no model has ever been able to accom-
modate all these operating variables. Our GA-RBF model is no
exception. Temperature is one of the most operating parameters
for the fuel cell and has a significant effect on the fuel cell. In
order to analyze the effects of different temperatures on output
voltage, we choose current density 7, which is decided by the
uncontrollable load, and cell temperature T as variables.

In general, a wide class of nonlinear systems can be
described by nonlinear autoregressive model with exogenous
inputs (NARX) [20]. So in this paper the SOFC nonlinear system
with two inputs and one output can be described as follows:

Utk+ 1) = fIUK), Uk —1), ..., Utk — n), I(k),
Ik—1),...,1(k—m), T(k)] (11)

Supposing there is a series of inputs I(k), I(k—1), ...,
I(k —m), T(k) and outputs U(k), Utk —1), ..., U(k—n). The
identification structure based on GA-RBF is shown in Fig. 2,
where TDL is the tapped delay line. The aim of our study is
thus, to find an GA-RBF model that approximates Eq. (11).
And it requires three steps to build an efficient GA-RBF model:
preparing training data, training the data to obtain a GA-RBF
model and predicting the new input data with the obtained
model.
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model Training Algorithm
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Fig. 2. Identification structure of SOFC stack based on GA-RBF.
4.1. Preparing training data

In our study, a model in Ref. [21] is used to generate the
data required for the training of the GA-RBF model. Here, two
groups of current density and cell voltage data at 800 °C and
1000 °C are chosen as training data, and each group has 701
pairs of data. Main operational parameters of SOFC are var-
ied, such as temperatures (600—1000 °C), stack current density
(0700 mA cm_z). In most cases, training data should be scaled,
normally linearly, to [0, 1] or [—1, +1]. An example of scaled
current density is shown in Table 1. Scaling can increase the
training speed and assist in selecting GA-RBF parameters. In
this paper, all the data, including, cell voltage, current density
and temperature, are scaled to [0, 1] by Eq. (12).

, Xi — Xmin

¥ = Sl omin (12)

Xmax — Xmin

4.2. Selection of the optimal GA-RBF parameters

In order to reduce the number of the parameters and improve
the speed of program debug, the hidden layer of the RBF neural
network is chosen 3 nodes. There are two inputs (current den-
sity I and cell temperature 7) and one output (voltage U), so
the structure of the RBF neural network is chosen 2-3-1.i.e. let
the RBF neural network consists of input layer with 2 nodes, 1
hidden layer with 3 nodes and output layer with 1 node.

4.2.1. Coding structure

Coding aims to build the relationship between the problem
and the individual in genetic algorithms. If the problems are
expressed by coding strings, these strings are called an indi-

Table 1

An example of cell current density scaled to [0, 1]

Unscaled (mA cm™2) Scaled
0 0

100 0.143

150 0.214

300 0.429

450 0.643

550 0.786

700 1
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vidual or a chromosome. A population contains a number of
individuals. Generally, the population size n is chosen from 30
to 100. In order to save the running time, here, the size n is chosen
30. Each individual represents a variable or a part of the problem
which is needed to be optimized. In this paper, the parameters of
RBF neural networks are needed to be optimized by the GA. So
these individuals represent the widths and centers of the Gaus-
sian function and the output weights, and the representation of
an individual is

p = [b1 by b3 ci1 12 c13 €21 €22 €23 w1 wp w3 (13)

Here, each individual consists of 12 parameters, i.e. 3 widths
and 6 centers of the hidden unit of the RBF neural network
and 3 connection weights. Each parameter in the individual is
expressed by a two-decimal coding of 10 bits.

All the width of the RBF hidden are chosen on the interval
[0.1, 3] and the centers of the RBF hidden unit are chosen on
the interval [—3, 3]. And all weights are chosen on the interval
[—1,1].

4.2.2. Fitness function evaluation

All individuals of one generation are evaluated by a fitness
function. When using a genetic algorithm to solve a problem,
the problem is represented by a string and an evaluation function
is defined. The evaluation function uses the value of the string
as a parameter to evaluate the results of the problem. Each string
is evaluated through the evaluation function and the new gener-
ation is formed by using the specific genetic operators. Here, a
RBF neural network is used to model a SOFC stack. The value
of the goal function is littler, and then the precision is higher. To
get a higher regression precision, the goal function is defined as
follows:

N
JzﬂQ:MmL (14)

i=1

Here, e(i) is the error between the experimental output and
the model output. Generally, the fitness function is defined as the
reciprocal of the goal function, so we adopt the fitness function
as below:

1 1 s
f=5=—%—" (15)
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4.2.3. Genetic operations

There are mainly three genetic operations, including,
selection, crossover and mutation operations. These genetic
operations have key effects on the performances of the genetic
algorithm. In this study, we use the roulette-wheel selection
method—a simulated roulette is spun—for this selection pro-

Table 2

cess. The response fitness value of every individual is p; (i=1,
2, ..., N). According to the p;, a roulette wheel is divided into
N parts. In the selection operation, spinning the roulette wheel,
if a consulted point lies in the ith sector, we will choose the
ith individual. Obviously the area of the sector is larger, and
then the probability that the consulted point lies in the sector, is
more. This indicates that the better an individual’s fitness is, the
more likely it is to be selected. An individual is probabilistically
selected from the population on the basis of its fitness and the
selected individual is then copied into the next generation of the
population without any change.

Selection directs the search toward the best existing indi-
viduals but does not create any new individuals. In nature,
an offspring has two parents and inherits genes from both.
The main operator working on the parents is the crossover
operator, the operation of which occurred for a selected pair
with a crossover rate p. that was set to 0.8 in this study. In
each new population, there are p. x n individuals which are
needed crossover operations. Here, n is the population size.
In the crossover step, we also keep the same number of chro-
mosomes for each group. After this operation, the individuals
with poor performances are replaced by the newly produced
offspring.

Although selection and crossover will produce many new
strings, they do not introduce any new information to the pop-
ulation at the site of an individual. Mutation is an operator that
randomly alters the allele of a gene. With mutation, new genetic
materials can be introduced into the population. In each new
population, there are py, x n x L individuals which are needed
mutation operations. Here, py, is the mutation probability, n the
population size and L is the string length. According to the above
analyses, we know that every individual consists of 12 param-
eters and each parameter in the individual is expressed by a
two-decimal coding of 10 bits. So Lis 120. In the paper, mutation
probability py, is chosen 0.003—[1:1:size] x 0.003 /size. This
indicates that the more little an individual’s fitness is, the more
likely it is to be mutated.

4.2.4. The terminate criterion

There are usually two criterions for terminating a run. The
first criterion is deciding the maximum generation previously,
and the second is that the process continues until the fitness
function has no change. Here, we choose the first criterion and
the maximum generation is chosen 100.

After 100 times genetic, the optimized initial values of the
parameters are shown in Table 2. The optimization process of
the goal function J in Eq. (14) is shown in Fig. 3 and the optimal
value J is 121.3089.

After the optimized initial values of the three parameters are
obtained, we utilize the gradient descent learning algorithms to
adjust them, which can be seen in Egs. (5)—(10). By tuning, the

The optimized widths and centers of the Gaussian function and the optimized output weights

by by b3 cn 2 c13

21 €22 €23 wi w2 w3

1.9880 1.5146 2.8724 0.3724 —0.8416 —0.5073

—1.7918

1.6276 —2.7889 —-0.4174 0.8397 0.8690
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Fig. 3. The goal function curve of the best individual with the population evolv-
ing.
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Fig. 4. Voltage—current density characteristics: predicted by GA-RBF model
and experimental at 7=900 °C.

momentum term « is chosen 0.6 and the learning rate 7 is chosen
0.53.

4.3. Predicting with the GA-RBF model

After training, a GA-RBF model is obtained, which can be
used to predict new input dates. In our study, the testing data is
also chosen from the above-mentioned model in Ref. [21]. The
cell voltage at 900 °C with the current density in the range from

0.9
0.8},

BP T=800 °C
Experimental T=900 °C

0.71N i

__06f R ]
T 0.5¢
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Fig. 5. Voltage—current density characteristics: predicted by BP model and
experimental at 7=900°C.

0 to 700 mA cm™2 is predicted. And a comparison between the
predicted data and the experimental data is made to evaluate the
model’s prediction precision, which is shown in Fig. 4. At the
same time, a BP neural network model is also used to predict the
stack voltage at 900 °C. Via the toolbox of MATLAB 7.0, the
predicted result is shown in Fig. 5. Comparing Figs. 4 and 5,
we can see clearly that the precision is greatly improved. It
indicates that GA-RBF is a powerful tool for modeling SOFC
and our GA-RBF model presented in this paper is accurate and
valid.

5. Conclusions

An offline modeling study of a SOFC stack using a GA-
RBF neural network is reported in this paper. It is shown that
the GA-RBF model is an attractive modeling solution in that
it avoids using complicated differential equations to describe
the stack, and the input—output characteristics can be achieved
quickly by GA-RBF estimation. In our study, training a GA-
RBF with the optimized parameters only needs 10s on a PIII
256 MHz computer and the time for prediction is no more than
5s. Besides, compared with the BP neural network approach,
the simulation results show that the GA-RBF approach yields
higher prediction accuracy. Hence, it is feasible to establish the
model of the SOFC by using GA-RBF.

Among all the operating parameters that have an effect on
the SOFC performance, only current density and temperature
are included in our model. In the future we will incorporate
other operating parameters into the GA-RBF model, and based
on this GA-RBF model, some control scheme studies, such as
predictive control and robust control will be developed.
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