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bstract

In this paper, a nonlinear offline model of the solid oxide fuel cell (SOFC) is built by using a radial basis function (RBF) neural network based
n a genetic algorithm (GA). During the process of modeling, the GA aims to optimize the parameters of RBF neural networks and the optimum
alues are regarded as the initial values of the RBF neural network parameters. Furthermore, we utilize the gradient descent learning algorithm to

djust the parameters. The validity and accuracy of modeling are tested by simulations. Besides, compared with the BP neural network approach,
he simulation results show that the GA-RBF approach is superior to the conventional BP neural network in predicting the stack voltage with
ifferent temperature. So it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Unlike other fuel cells, the solid oxide fuel cell (SOFC) is
ntirely solid state with no liquid components and works in a
omplicated high-temperature (600–1000 ◦C) environment. Due
o its higher energy conversion efficiency than those conven-
ional heat engine systems and other types of fuel cells, the SOFC
s the promising candidate for future energy conversion systems.

In the last several decades, fruitful results from SOFC stack
odeling have been obtained. However, most of the existing
odels focus on the design of the SOFC instead of its appli-

ations. What matters most to SOFC users, however, are not its
elevant internal details but its performance under different oper-
ting conditions. What they really need are behavioral models,
ith which they can predict the SOFC behavior under various
perating conditions.

Motivated by this need, we decided to make a modeling study

f the SOFC system by using a radial basis function (RBF)
eural network based on a genetic algorithm (GA). Neural net-
orks are considered as an attractive structure to establish the

∗ Corresponding author. Tel.: +86 21 34203657; fax: +86 21 62932154.
E-mail address: xj wu@sjtu.edu.cn (X.-J. Wu).
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athematical relationship of the dynamic system based on the
nput–output data. A RBF neural network is a feed-forward
eural network with one hidden layer and can uniformly approx-
mate any continuous function to a prospected accuracy [1].
owever, a key problem by using the RBF neural network

pproach is about how to choose the optimum initial values
f the following three parameters: the output weights, the cen-
ers and widths of the hidden unit. If they are not appropriately
hosen, the RBF neural network may degrade validity and accu-
acy of modeling. To assure the optimal performance of the
BF neural network approach for SOFC modeling, we con-

ider applying a genetic algorithm to optimize the RBF neural
etwork parameters in this study. Genetic algorithms are a kind
f self-adaptive global searching optimization algorithm based
n the mechanics of natural selection and natural genetics [2].
ifferent from conventional optimization algorithms, genetic

lgorithms are based on population, in which each individual is
volved parallel, and the ultimate result is included in the last
opulation.

This paper is organized as follows. Section 2 briefly discusses

arious existing SOFC models. In Section 3, a RBF neural
etwork based on a genetic algorithm for nonlinear system
odeling is explained. In Section 4, identification structure

f the SOFC stack and the processes of training and testing

mailto:xj_wu@sjtu.edu.cn
dx.doi.org/10.1016/j.jpowsour.2007.01.086


1 wer Sources 167 (2007) 145–150

t
s

2

m
c
c
r
f
c
r
f
t
e
a
i

i
m
p
c
M
c
b

S
w
s
e
m
m
b
c
p
a
S
c
v

r
I
b

3
m

d
a
a
d
n
t
p
l

d
o

[
n
a

u

w
i
u
l

y

T

e

t
l

E

u
o
a

w

c

b

w
1], η ∈ [0, 1]. The term �wi, �cij and �bi are defined as:

∂E
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he GA-RBF model are presented in detail. Conclusions and
uggestions for future work are summarized in the last section.

. Existing SOFC models

In this section, we briefly review the various existing SOFC
odels and discuss their advantages and disadvantages. A SOFC

onsists of an interconnected structure and a three-layer region
omposed of two ceramic electrodes, anode and cathode, sepa-
ated by a dense ceramic electrolyte. In the fuel, the oxygen ions
ormed at the cathode migrate through the ion-conducting solid
eramic electrolyte to the anode/electrolyte interface where they
eact with the hydrogen and carbon monoxide contained in the
uel, producing water and carbon dioxide while liberating elec-
rons that flow back to the cathode/electrolyte interface via an
xternal circuit [3]. A single cell produces an open-circuit volt-
ge of approximately 1 V, so cells have to be connected together
n a series arrangement to form a stack.

Some analytical SOFC models have been put forward,
ncluding, simplified zero-dimensional [4] and one-dimensional

odels [5–8], two-dimensional models [9–12] and more com-
lex three-dimensional models [13,14]. Although these models
an help analyze and optimize the SOFC, they have some limits.
ost of the models are based on mass, energy and momentum

onservation laws, so their expressions are too complicated to
e suitable for engineering applications.

An empirical modeling approach will be more practical for
OFC users, from which they can deduce SOFC stack responses
ithout knowledge of the internal details. To meet the demands,

ome researchers have attempted to establish novel SOFC mod-
ls. Arriagada et al. [15] utilized artificial neural network (ANN)
ethodology to derive a SOFC model. Highly efficient as the
odel is, however, its practical design suffers from some draw-

acks, such as the existence of local minima and over-fitting,
hoice of the number of hidden units, etc. A least squares sup-
ort vector machine (LS-SVM) was used to build the model of
SOFC stack by Huo et al. [16]. LS-SVM is a modification of
VM and possesses many advantages. However, this paper only
onsidered the fuel utilization, which had an effect on the cell
oltage, and did not think about the other factors.

In this work, a RBF neural network based on a genetic algo-
ithm is employed to establish a black-box model for the SOFC.
n the following sections, the GA-RBF modeling method will
e presented in detail.

. GA-RBF neural network for nonlinear system
odeling

A RBF neural network has an input layer, a nonlinear hid-
en layer and a linear output layer. The nodes within each layer
re fully connected to the previous layer nodes. The input vari-
bles are each assigned to nodes in the input layer and connected
irectly to the hidden layer without weights. The hidden layer

odes are RBF units. The nodes calculate the Euclidean dis-
ances between the centers and the network input vector, and
ass the results through a nonlinear function [17]. The output
ayer nodes are weighted linear combinations of the RBF in hid-

�

Fig. 1. The structure of RBF neural networks.

en layer. The structure of a RBF neural network with n inputs,
ne output and q hidden nodes is given in Fig. 1.

Where, input x = [x1, x2, . . ., xn]T and w =
w1, w2, . . . , wq]T is the neural network weight. ui is a
onlinear function and here, it is chosen as a Gaussian
ctivation function

i = exp

[
− (x − ci)T(x − ci)

2b2
i

]
(i = 1, 2, . . . , q) (1)

here ci = (ci1, ci2, . . ., cij)T, j = 1, 2, . . ., n, is the center of the
th RBF hidden unit, and bi is the width of the ith RBF hidden
nit. Then the ith RBF network output can be represented as a
inearly weighted sum of q basis functions

q(k) =
q∑

i=1

wiui =
q∑

i=1

wi exp

[
− (x − ci)T(x − ci)

2b2
i

]
(2)

Let y(k) represent the target value of the network at time k.
he error of the network at time k is defined as:

(k) = y(k) − yq(k) (3)

The cost function of the network is the squared error between
he target and the predicted values, which is given by the fol-
owing equation:

(k) = 1

2
[e(k)]2 (4)

The learning algorithm aims to minimize the squared error
sing a gradient descent procedure. Hence, the change of the
utput weight wi, the centers cij and the widths bi is determined
ccording to the following equation:

i(k) = wi(k − 1) + η �wi + α(wi(k − 1) − wi(k − 2)) (5)

ij(k) = cij(k − 1) + η �cij + α(cij(k − 1) − cij(k − 2)) (6)

i(k) = bi(k − 1) + η �bi + α(bi(k − 1) − bi(k − 2)) (7)

here α is the momentum term and η is the learning rate, α ∈ [0,
wi =
∂wi

= (y(k) − yq(k))ui = (y(k) − yq(k))

× exp

[
− (x − ci)T (x − ci)

2b2
i

]
(8)



wer Sources 167 (2007) 145–150 147

�

�

c
e
w
t
m
n

a
t
s
a
o
s
s
i
t

4

a
p
fl
t
d
fi
[
m
e
f
o
v
u

d
i
w

U

I
i
w
t
A
p
m
m

4

d
g
1
p
i
(
n
c
t
t
a

x

4

t
n
s
t
t
h

4.2.1. Coding structure
Coding aims to build the relationship between the problem

and the individual in genetic algorithms. If the problems are
expressed by coding strings, these strings are called an indi-

Table 1
An example of cell current density scaled to [0, 1]

Unscaled (mA cm−2) Scaled

0 0
100 0.143
X.-J. Wu et al. / Journal of Po

cij = ∂E

∂cij

= (y(k) − yq(k))wi

xj − cij

b2
i

(9)

bi = ∂E

∂bi

= (y(k) − yq(k))wiui

‖x − ci‖2

b3
i

(10)

When we program to realize the RBF algorithm, how to
hoose the optimum initial values of the following three param-
ters in Eqs. (5)–(7): the output weight wi, the centers cij and the
idths bi, is very important. If they are not appropriately chosen,

he RBF neural network may degrade validity and accuracy of
odeling. So a genetic algorithm is used to optimize the RBF

eural network parameters.
A genetic algorithm is an interactive procedure that maintains

population of strings which constitute the set of candidate solu-
ions to the specific problem [18]. During each generation, the
trings in the current population are rated for their effectiveness
s solutions. On the basis of these evaluations, a new population
f candidate solutions is formed by using genetic operations,
uch as selection, crossover and mutation. There are four major
teps required to use the genetic algorithm to solve a problem,
nclude, coding, evaluation of fitness, genetic operations and the
erminate criterion.

. Modeling SOFC by GA-RBF

For a given SOFC stack, the relation between terminal volt-
ge U and current density I is influenced by many operating
arameters, such as cell temperature, air flow rate, hydrogen
ow rate, air pressure, hydrogen pressure, etc. However, due to

he high number of operating variables, a complete experimental
atabase of SOFC under the different operating conditions is dif-
cult to obtain and no data are available in the open literature yet
19]. Up to now, almost no model has ever been able to accom-
odate all these operating variables. Our GA-RBF model is no

xception. Temperature is one of the most operating parameters
or the fuel cell and has a significant effect on the fuel cell. In
rder to analyze the effects of different temperatures on output
oltage, we choose current density I, which is decided by the
ncontrollable load, and cell temperature T as variables.

In general, a wide class of nonlinear systems can be
escribed by nonlinear autoregressive model with exogenous
nputs (NARX) [20]. So in this paper the SOFC nonlinear system
ith two inputs and one output can be described as follows:

(k + 1) = f [U(k), U(k − 1), . . . , U(k − n), I(k),

I(k − 1), . . . , I(k − m), T (k)] (11)

Supposing there is a series of inputs I(k), I(k − 1), . . .,
(k − m), T(k) and outputs U(k), U(k − 1), . . ., U(k − n). The
dentification structure based on GA-RBF is shown in Fig. 2,
here TDL is the tapped delay line. The aim of our study is
hus, to find an GA-RBF model that approximates Eq. (11).
nd it requires three steps to build an efficient GA-RBF model:
reparing training data, training the data to obtain a GA-RBF
odel and predicting the new input data with the obtained
odel.

1
3
4
5
7

Fig. 2. Identification structure of SOFC stack based on GA-RBF.

.1. Preparing training data

In our study, a model in Ref. [21] is used to generate the
ata required for the training of the GA-RBF model. Here, two
roups of current density and cell voltage data at 800 ◦C and
000 ◦C are chosen as training data, and each group has 701
airs of data. Main operational parameters of SOFC are var-
ed, such as temperatures (600–1000 ◦C), stack current density
0–700 mA cm−2). In most cases, training data should be scaled,
ormally linearly, to [0, 1] or [−1, +1]. An example of scaled
urrent density is shown in Table 1. Scaling can increase the
raining speed and assist in selecting GA-RBF parameters. In
his paper, all the data, including, cell voltage, current density
nd temperature, are scaled to [0, 1] by Eq. (12).

′ = xi − xmin

xmax − xmin
(12)

.2. Selection of the optimal GA-RBF parameters

In order to reduce the number of the parameters and improve
he speed of program debug, the hidden layer of the RBF neural
etwork is chosen 3 nodes. There are two inputs (current den-
ity I and cell temperature T) and one output (voltage U), so
he structure of the RBF neural network is chosen 2-3-1.i.e. let
he RBF neural network consists of input layer with 2 nodes, 1
idden layer with 3 nodes and output layer with 1 node.
50 0.214
00 0.429
50 0.643
50 0.786
00 1
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idual or a chromosome. A population contains a number of
ndividuals. Generally, the population size n is chosen from 30
o 100. In order to save the running time, here, the size n is chosen
0. Each individual represents a variable or a part of the problem
hich is needed to be optimized. In this paper, the parameters of
BF neural networks are needed to be optimized by the GA. So

hese individuals represent the widths and centers of the Gaus-
ian function and the output weights, and the representation of
n individual is

= [b1 b2 b3 c11 c12 c13 c21 c22 c23 w1 w2 w3] (13)

Here, each individual consists of 12 parameters, i.e. 3 widths
nd 6 centers of the hidden unit of the RBF neural network
nd 3 connection weights. Each parameter in the individual is
xpressed by a two-decimal coding of 10 bits.

All the width of the RBF hidden are chosen on the interval
0.1, 3] and the centers of the RBF hidden unit are chosen on
he interval [−3, 3]. And all weights are chosen on the interval
−1, 1].

.2.2. Fitness function evaluation
All individuals of one generation are evaluated by a fitness

unction. When using a genetic algorithm to solve a problem,
he problem is represented by a string and an evaluation function
s defined. The evaluation function uses the value of the string
s a parameter to evaluate the results of the problem. Each string
s evaluated through the evaluation function and the new gener-
tion is formed by using the specific genetic operators. Here, a
BF neural network is used to model a SOFC stack. The value
f the goal function is littler, and then the precision is higher. To
et a higher regression precision, the goal function is defined as
ollows:

= 50
N∑

i=1

|e(i)| . (14)

Here, e(i) is the error between the experimental output and
he model output. Generally, the fitness function is defined as the
eciprocal of the goal function, so we adopt the fitness function
s below:

= 1

J
= 1

50
N∑

i=1

|e(i)|
(15)

.2.3. Genetic operations
There are mainly three genetic operations, including,
election, crossover and mutation operations. These genetic
perations have key effects on the performances of the genetic
lgorithm. In this study, we use the roulette-wheel selection
ethod—a simulated roulette is spun—for this selection pro-

v

o
a

able 2
he optimized widths and centers of the Gaussian function and the optimized output

1 b2 b3 c11 c12 c13 c

.9880 1.5146 2.8724 0.3724 −0.8416 −0.5073 −
ources 167 (2007) 145–150

ess. The response fitness value of every individual is pi (i = 1,
, . . ., N). According to the pi, a roulette wheel is divided into
parts. In the selection operation, spinning the roulette wheel,

f a consulted point lies in the ith sector, we will choose the
th individual. Obviously the area of the sector is larger, and
hen the probability that the consulted point lies in the sector, is

ore. This indicates that the better an individual’s fitness is, the
ore likely it is to be selected. An individual is probabilistically

elected from the population on the basis of its fitness and the
elected individual is then copied into the next generation of the
opulation without any change.

Selection directs the search toward the best existing indi-
iduals but does not create any new individuals. In nature,
n offspring has two parents and inherits genes from both.
he main operator working on the parents is the crossover
perator, the operation of which occurred for a selected pair
ith a crossover rate pc that was set to 0.8 in this study. In

ach new population, there are pc × n individuals which are
eeded crossover operations. Here, n is the population size.
n the crossover step, we also keep the same number of chro-
osomes for each group. After this operation, the individuals
ith poor performances are replaced by the newly produced
ffspring.

Although selection and crossover will produce many new
trings, they do not introduce any new information to the pop-
lation at the site of an individual. Mutation is an operator that
andomly alters the allele of a gene. With mutation, new genetic
aterials can be introduced into the population. In each new

opulation, there are pm × n × L individuals which are needed
utation operations. Here, pm is the mutation probability, n the

opulation size and L is the string length. According to the above
nalyses, we know that every individual consists of 12 param-
ters and each parameter in the individual is expressed by a
wo-decimal coding of 10 bits. So L is 120. In the paper, mutation
robability pm is chosen 0.003−[1:1:size] × 0.003/size. This
ndicates that the more little an individual’s fitness is, the more
ikely it is to be mutated.

.2.4. The terminate criterion
There are usually two criterions for terminating a run. The

rst criterion is deciding the maximum generation previously,
nd the second is that the process continues until the fitness
unction has no change. Here, we choose the first criterion and
he maximum generation is chosen 100.

After 100 times genetic, the optimized initial values of the
arameters are shown in Table 2. The optimization process of
he goal function J in Eq. (14) is shown in Fig. 3 and the optimal

alue J is 121.3089.

After the optimized initial values of the three parameters are
btained, we utilize the gradient descent learning algorithms to
djust them, which can be seen in Eqs. (5)–(10). By tuning, the

weights

21 c22 c23 w1 w2 w3

1.7918 1.6276 −2.7889 −0.4174 0.8397 0.8690
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Fig. 3. The goal function curve of the best individual with the population evolv-
ing.
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ig. 4. Voltage–current density characteristics: predicted by GA-RBF model
nd experimental at T = 900 ◦C.

omentum term α is chosen 0.6 and the learning rate η is chosen
.53.

.3. Predicting with the GA-RBF model
After training, a GA-RBF model is obtained, which can be
sed to predict new input dates. In our study, the testing data is
lso chosen from the above-mentioned model in Ref. [21]. The
ell voltage at 900 ◦C with the current density in the range from

ig. 5. Voltage–current density characteristics: predicted by BP model and
xperimental at T = 900 ◦C.

R

[

[

[

ources 167 (2007) 145–150 149

to 700 mA cm−2 is predicted. And a comparison between the
redicted data and the experimental data is made to evaluate the
odel’s prediction precision, which is shown in Fig. 4. At the

ame time, a BP neural network model is also used to predict the
tack voltage at 900 ◦C. Via the toolbox of MATLAB 7.0, the
redicted result is shown in Fig. 5. Comparing Figs. 4 and 5,
e can see clearly that the precision is greatly improved. It

ndicates that GA-RBF is a powerful tool for modeling SOFC
nd our GA-RBF model presented in this paper is accurate and
alid.

. Conclusions

An offline modeling study of a SOFC stack using a GA-
BF neural network is reported in this paper. It is shown that

he GA-RBF model is an attractive modeling solution in that
t avoids using complicated differential equations to describe
he stack, and the input–output characteristics can be achieved
uickly by GA-RBF estimation. In our study, training a GA-
BF with the optimized parameters only needs 10 s on a PIII
56 MHz computer and the time for prediction is no more than
s. Besides, compared with the BP neural network approach,

he simulation results show that the GA-RBF approach yields
igher prediction accuracy. Hence, it is feasible to establish the
odel of the SOFC by using GA-RBF.
Among all the operating parameters that have an effect on

he SOFC performance, only current density and temperature
re included in our model. In the future we will incorporate
ther operating parameters into the GA-RBF model, and based
n this GA-RBF model, some control scheme studies, such as
redictive control and robust control will be developed.
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